Peer review of Agricultural journals

Cheol-Heui YUN

Professor at Seoul National University
Chair at Committee on Publication Ethics, KCSE
Contents

● Introduction
 ✓ Top publisher/Institutional rankings in Agricultural sciences

● Peer review system

● How to maintain a GOOD review system?

● How to perform a peer-review?

● Conclusion: Peer Review Principles (COPE)
Top publisher list

<table>
<thead>
<tr>
<th>Publisher</th>
<th>No. Journals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elsevier</td>
<td>2571</td>
</tr>
</tbody>
</table>

Scijournal.org (2017)

![Map of the Netherlands]
Top publisher list

Scijournal.org (2017)

<table>
<thead>
<tr>
<th>Publisher</th>
<th>No. Journals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Springer-Verlag</td>
<td>2209</td>
</tr>
</tbody>
</table>

![Germany](image)

[Germany]
Top publisher list

<table>
<thead>
<tr>
<th>Publisher</th>
<th>No. Journals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taylor and Francis</td>
<td>1803</td>
</tr>
</tbody>
</table>

[United Kingdom]

Publisher: Taylor and Francis
No. Journals: 1803

Scijournal.org (2017)
Top publisher list

Scijournal.org (2017)

<table>
<thead>
<tr>
<th>Publisher</th>
<th>No. Journals</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Wiley and Sons</td>
<td>1604</td>
</tr>
</tbody>
</table>
Top publisher list

<table>
<thead>
<tr>
<th>Publisher</th>
<th>No. Journals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sage Publications</td>
<td>742</td>
</tr>
</tbody>
</table>

Scijournal.org (2017)

[USA]
Top publisher list

<table>
<thead>
<tr>
<th>Publisher</th>
<th>No. Journals</th>
</tr>
</thead>
<tbody>
<tr>
<td>SciELO</td>
<td>684</td>
</tr>
</tbody>
</table>

Scijournal.org (2017)

[Map of Brazil]
Top publisher list

Scijournal.org (2017)

<table>
<thead>
<tr>
<th>Publisher</th>
<th>No. Journals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walter de Gruyter</td>
<td>683</td>
</tr>
</tbody>
</table>

DE GRUYTER

[Germany]
Top publisher list

<table>
<thead>
<tr>
<th>Publisher</th>
<th>No. Journals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redalyc</td>
<td>447</td>
</tr>
</tbody>
</table>

Scijournal.org (2017)

![Mexico map](image)

[Mexico]
Top publisher list

Scijournal.org (2017)

<table>
<thead>
<tr>
<th>Publisher</th>
<th>No. Journals</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMIT publishing</td>
<td>415</td>
</tr>
</tbody>
</table>

[Australia]
Top publisher list

Scijournal.org (2017)

<table>
<thead>
<tr>
<th>Publisher</th>
<th>No. Journals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inderscience Publishers</td>
<td>391</td>
</tr>
</tbody>
</table>

10

![Inderscience Publishers logo]

[Switzerland map]
Top publisher list

<table>
<thead>
<tr>
<th>Publisher</th>
<th>No. Journals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hindawi Publishing Corporation</td>
<td>366</td>
</tr>
</tbody>
</table>

Scijournal.org (2017)

[Map of Egypt]
Top subjects list

<table>
<thead>
<tr>
<th>Subject</th>
<th>No Journals</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEDICAL SCIENCES</td>
<td>6186</td>
</tr>
<tr>
<td>BIOLOGY</td>
<td>2652</td>
</tr>
<tr>
<td>BUSINESS AND ECONOMICS</td>
<td>2618</td>
</tr>
<tr>
<td>ENGINEERING</td>
<td>1993</td>
</tr>
<tr>
<td>COMPUTER SCIENCE</td>
<td>1780</td>
</tr>
<tr>
<td>EDUCATION</td>
<td>1310</td>
</tr>
<tr>
<td>SOCIAL SCIENCES</td>
<td>1276</td>
</tr>
<tr>
<td>LITERATURE</td>
<td>1254</td>
</tr>
<tr>
<td>HEALTH AND SAFETY</td>
<td>1110</td>
</tr>
<tr>
<td>HISTORY</td>
<td>1083</td>
</tr>
<tr>
<td>HUMANITIES</td>
<td>1054</td>
</tr>
<tr>
<td>LAW</td>
<td>974</td>
</tr>
<tr>
<td>MATHEMATICS</td>
<td>803</td>
</tr>
<tr>
<td>PSYCHOLOGY</td>
<td>793</td>
</tr>
<tr>
<td>CHEMISTRY</td>
<td>785</td>
</tr>
<tr>
<td>ENVIRONMENTAL STUDIES</td>
<td>773</td>
</tr>
<tr>
<td>PHYSICS</td>
<td>748</td>
</tr>
<tr>
<td>POLITICAL SCIENCE</td>
<td>721</td>
</tr>
<tr>
<td>AGRICULTURE</td>
<td>676</td>
</tr>
<tr>
<td>EARTH SCIENCES</td>
<td>594</td>
</tr>
<tr>
<td>ART</td>
<td>557</td>
</tr>
</tbody>
</table>

Scijournal.org (2017)
Agriculture and Biological Sciences

<table>
<thead>
<tr>
<th>Subject category</th>
<th>Number of journals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecology, Evolution, Behavior and Systematics</td>
<td>537</td>
</tr>
<tr>
<td>Plant Science</td>
<td>398</td>
</tr>
<tr>
<td>Animal Science and Zoology</td>
<td>356</td>
</tr>
<tr>
<td>Agronomy and Crop Science</td>
<td>304</td>
</tr>
<tr>
<td>Food Science</td>
<td>255</td>
</tr>
<tr>
<td>Aquatic Science</td>
<td>198</td>
</tr>
<tr>
<td>Insect Science</td>
<td>130</td>
</tr>
<tr>
<td>Forestry</td>
<td>129</td>
</tr>
<tr>
<td>Soil Science</td>
<td>105</td>
</tr>
<tr>
<td>Horticulture</td>
<td>71</td>
</tr>
<tr>
<td>Horticulture</td>
<td>71</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>203</td>
</tr>
</tbody>
</table>

A total of 1903 journals are included in the Agriculture and Biological Sciences category.
Institution Rankings in Agricultural Sciences

Based on citations per paper among institutions with 5,000 or more citations.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Institution</th>
<th>Papers</th>
<th>Citations</th>
<th>Citations Per Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tufts University, USA</td>
<td>392</td>
<td>7,089</td>
<td>18.08</td>
</tr>
<tr>
<td>2</td>
<td>Institute of Food Research, UK</td>
<td>471</td>
<td>6,912</td>
<td>14.68</td>
</tr>
<tr>
<td>3</td>
<td>University of Helsinki, Finland</td>
<td>779</td>
<td>9,905</td>
<td>12.72</td>
</tr>
<tr>
<td>4</td>
<td>Cornell University, USA</td>
<td>1,557</td>
<td>17,096</td>
<td>10.98</td>
</tr>
<tr>
<td>5</td>
<td>University of Wisconsin, USA</td>
<td>1,428</td>
<td>14,326</td>
<td>10.03</td>
</tr>
<tr>
<td>6</td>
<td>University of California, Davis, USA</td>
<td>1,954</td>
<td>19,454</td>
<td>9.96</td>
</tr>
<tr>
<td>7</td>
<td>Royal Veterinary and Agricultural University, Denmark</td>
<td>1,013</td>
<td>9,842</td>
<td>9.72</td>
</tr>
<tr>
<td>8</td>
<td>University of Reading, UK</td>
<td>846</td>
<td>8,211</td>
<td>9.71</td>
</tr>
<tr>
<td>10</td>
<td>Oregon State University, USA</td>
<td>725</td>
<td>6,985</td>
<td>9.63</td>
</tr>
<tr>
<td>11</td>
<td>Danish Institute of Agricultural Sciences, Denmark</td>
<td>603</td>
<td>5,794</td>
<td>9.61</td>
</tr>
<tr>
<td>12</td>
<td>Wageningen University, The Netherlands</td>
<td>2,443</td>
<td>23,351</td>
<td>9.56</td>
</tr>
<tr>
<td>13</td>
<td>University College Cork, Ireland</td>
<td>794</td>
<td>7,580</td>
<td>9.55</td>
</tr>
<tr>
<td>14</td>
<td>Rutgers State University, USA</td>
<td>585</td>
<td>5,440</td>
<td>9.3</td>
</tr>
<tr>
<td>15</td>
<td>University of Massachusetts, USA</td>
<td>634</td>
<td>5,740</td>
<td>9.05</td>
</tr>
<tr>
<td>16</td>
<td>Penn State University, USA</td>
<td>984</td>
<td>8,727</td>
<td>8.87</td>
</tr>
<tr>
<td>17</td>
<td>University of Nebraska, USA</td>
<td>1,081</td>
<td>9,576</td>
<td>8.86</td>
</tr>
<tr>
<td>18</td>
<td>Michigan State University, USA</td>
<td>952</td>
<td>8,397</td>
<td>8.82</td>
</tr>
<tr>
<td>19</td>
<td>University of Illinois, USA</td>
<td>1,287</td>
<td>11,328</td>
<td>8.8</td>
</tr>
<tr>
<td>20</td>
<td>U.S. Food and Drug Administration, USA</td>
<td>818</td>
<td>7,155</td>
<td>8.75</td>
</tr>
</tbody>
</table>

Source: Thomson Reuters' Essential Science Indicators database.
Institutional Rankings in **Environment and Ecology**

<table>
<thead>
<tr>
<th>Rank</th>
<th>Institution</th>
<th>Papers</th>
<th>Citations</th>
<th>Citations Per Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stanford University, Stanford, CA, USA</td>
<td>1,020</td>
<td>21,318</td>
<td>20.90</td>
</tr>
<tr>
<td>2</td>
<td>University of California, Santa Barbara, CA, USA</td>
<td>823</td>
<td>16,099</td>
<td>19.56</td>
</tr>
<tr>
<td>3</td>
<td>Princeton University, Princeton, NJ, USA</td>
<td>555</td>
<td>10,852</td>
<td>19.55</td>
</tr>
<tr>
<td>4</td>
<td>Smithsonian Institution, Washington, DC, USA</td>
<td>939</td>
<td>17,964</td>
<td>19.13</td>
</tr>
<tr>
<td>5</td>
<td>University of California, Santa Cruz, CA, USA</td>
<td>583</td>
<td>10,965</td>
<td>18.81</td>
</tr>
<tr>
<td>6</td>
<td>University of Edinburgh, Edinburgh, Scotland</td>
<td>663</td>
<td>12,411</td>
<td>18.72</td>
</tr>
<tr>
<td>7</td>
<td>University of Sheffield, Sheffield, England</td>
<td>789</td>
<td>14,357</td>
<td>18.20</td>
</tr>
<tr>
<td>8</td>
<td>University of Oxford, Oxford, England</td>
<td>699</td>
<td>12,655</td>
<td>18.10</td>
</tr>
<tr>
<td>9</td>
<td>University of Alaska, Fairbanks and other campuses, AK, USA</td>
<td>657</td>
<td>11,706</td>
<td>17.82</td>
</tr>
<tr>
<td>10</td>
<td>Max Planck Society, various locations, Germany</td>
<td>1,008</td>
<td>17,861</td>
<td>17.72</td>
</tr>
<tr>
<td>11</td>
<td>Michigan State University, East Lansing, MI, USA</td>
<td>1,124</td>
<td>19,482</td>
<td>17.33</td>
</tr>
<tr>
<td>12</td>
<td>Duke University, Durham, NC, USA</td>
<td>1,136</td>
<td>19,560</td>
<td>17.22</td>
</tr>
<tr>
<td>13</td>
<td>Umea University, Umea, Sweden</td>
<td>641</td>
<td>10,979</td>
<td>17.13</td>
</tr>
<tr>
<td>14</td>
<td>University of London Imperial College of Science, Technology & Medicine, London, England</td>
<td>986</td>
<td>16,790</td>
<td>17.03</td>
</tr>
<tr>
<td>15</td>
<td>Harvard University, Cambridge, MA, USA</td>
<td>1,134</td>
<td>19,172</td>
<td>16.91</td>
</tr>
<tr>
<td>16</td>
<td>University of Minnesota, St. Paul, MN, USA</td>
<td>1,488</td>
<td>24,620</td>
<td>16.55</td>
</tr>
<tr>
<td>17</td>
<td>University of Maryland, College Park, MD, USA</td>
<td>1,157</td>
<td>18,605</td>
<td>16.08</td>
</tr>
<tr>
<td>18</td>
<td>Arizona State University, Tempe, AZ, USA</td>
<td>687</td>
<td>10,827</td>
<td>15.76</td>
</tr>
<tr>
<td>19</td>
<td>University of Wisconsin, Madison and other campuses, WI, USA</td>
<td>1,801</td>
<td>28,372</td>
<td>15.75</td>
</tr>
<tr>
<td>20</td>
<td>Swiss Federal Institute of Environmental Science and Technology, Dübendorf, Switzerland</td>
<td>697</td>
<td>10,974</td>
<td>15.74</td>
</tr>
</tbody>
</table>

SOURCE: Thomson Reuters’s **Essential Science Indicators** database
Research field: No boundary
Merged and divided; (dis)appear

Material science
Agricultural economics
Rural development
Landscape architecture
Crop/plant science
Forest science
Animal science
Engineering science
Medical science
(Food functional/medicinal) food science
Natural science
Agricultural sciences
3-D printer
Drone technology
Environmental science/ climate change
Social science

EiC: Prof. Jong K. HA

ARTICLE 2017 June 22
Polymorphism in the intron 20 of porcine O-linked N-acetylglucosamine transferase

Objective: O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) catalyzes the addition of O-GlcNAc and GlcNAcylation has extensive crosstalk with phosphorylation to regulate signaling and transcription. Pig OGT is located near the region of chromosome X that affects follic...

Current Issue
Volume 30(8); August 2017

1061 Genome scan linkage analysis identifies a major quantitative trait loci for fatty acid composition in longissimus dorsi muscle in an F2 intercross between Landrace and Korean native pigs
Hee-Bok Park, Sang-Hyun Han, Chee-Kyong Yoo, Jae-Bong Lee, Ji-Hyang Kim, Kwang-Soo Baek, Jun-Kyu Son, Sang-Min Shin, Hyun-Tae Lim, In-Cheol Cho
DOI: https://doi.org/10.5713/ajas.16.0562

1066 Genome-wide association study identifies 22 new loci for body dimension and body weight traits in a White Dorper/European F1 intercross population
Trends in publishing

Rapid conversion from “print” to “electronic”

- 1997: print only
- 2009: 55% for e-only (mostly e-collections), 25% for print, only 20% for print + electronic
- 2014: 95+% e-only (in life sciences field over 99%)
- 2018: ???

Changing role of “journals” due to e-access

Increased usage of articles: more downloads

Cost per article: less (???)

Electronic submission: increased manuscript inflow
WHY and WHAT to publish?

WHY publish?
Publishing is one of the important steps embedded in the scientific research process. During the career progression, it is essential for the graduation and (often) promotion.

What to publish: New and original results or methods; Reviews of particular subject; Manuscripts that advance the knowledge and understanding in a certain scientific field.

What NOT to publish: Reports of no scientific interest; Out of date work; Duplications of previously published work; Incorrect/unacceptable conclusion.
Peer-review in scientific publication

Peer review in scientific journals is the evaluation of manuscripts, usually before the publication by people familiar with the content of the manuscript (scientists for the scientific paper).

It is a type of quality control that helps maintain standards, improve the quality of publications and increase the credibility of published article.
Community Values Peer Review

Despite the criticism, surveys show peer review is valued by researchers & authors.

- Most (69%) researchers are satisfied with the current system of peer review but only a third think that the current system is the best we can do.
- Almost all researchers (91%) believe that their last paper was improved as a result of peer review.
- 93% of science authors consider quality of PEER REVIEW when deciding where to publish.
- 78% of OA authors prefer traditional, rigorous peer review.
- Most (84%) believe that without peer review there would be no control in scientific communication.
- While many want a faster process with fewer rounds, the overwhelming majority (~70%) prefer to wait for thorough review.
- Only 20% want basic check followed by post-publication review.

“The qualitative data also point to the fact that peer review is the central pillar of trust.”

 Sources: Sense About Science; Taylor & Francis; CIBER Research; NPG/Palgrave Macmillan Author Insights survey
What peer-review system is facing

The pressure to publish pushes down the quality

Scientists must publish less, otherwise a good research will be swamped by the ever-increasing volume of poor work.

What peer-review system is facing

Is more publication good?

Resulting a poor-quality science

Poor journal suffers from a good review process because of a lacking of good reviewers

Number of publications continues to grow exponentially; it was already approaching two million per year by 2012 (2.5 M, 2016).

Peer-review system is NOT perfect

- Slow
- Expensive
- Subjective
- (sometimes) Biased
- Open to abuse (unfairness?)
- Poor in detecting errors & fraud: introducing new detection tools
The value of peer review is not about filtering poor manuscripts; instead, peer review is valuable as a means of enhancing the quality of what is published (David J. Solomon, 2007).
Type of Peer-review (method)

- **Single blind**: reviewer information is not disclosed
- **Double blind**: reviewer and author information is not disclosed
- **Open review**: reviewer and author information is open
- **Post-publication review**: review after publication
Type of Peer-review (step)

1. Preliminary/in-house review: EiC, editors screen out without (or before) external peer-review.

2. Peer-review: External group of reviewers (expert).

3. Review after revision: External expert group of (the same) reviewers or editors.
General aspects of Peer-review

1. Role of peer reviewers: advisor [NOT decider].

2. Peer review is imperfect, inconsistent, incomplete but often provides the best (and maybe the only) pre-publication advice to the editors.

- Review as much in-house as possible before peer review: iThenticate/CrossCheck plagiarism check; screen for data and image manipulation; make sure necessary elements (eg, ethics, guidelines checklist, protocol, supplementary material, journal requirements, data) are present.

- Only the Editor is accountable and responsible for what is published.
In-house Review

• Most journals adopt this system.
• Editors decide whether a given MS will be subjected to peer-review or not.
• Why necessary?
 ✓ Being increased submission of MS
 ✓ Limited number of reviewers.
 ✓ To screen poor MS (in reality, many poor MS survive even after the peer-review process).
 ✓ Need to reduce MS numbers per reviewer for more efficient, accurate, and thorough MS evaluation.
In-house Review

• Rejection at this stage can be as high as 90%.

• Rejection criteria: scope, originality, merit, methods (esp., statistics), proficiency of English.

• Authors may request reconsideration on rejection at this stage, but very few cases are granted.
HOW TO MAINTAIN A GOOD REVIEW SYSTEM?
Value peer-reviewers’ efforts

Reviewers are (often) unpaid, overworked, under-rewarded, and therefore ..

- Do not ask to review too often (e.g., no more than once a month and not if already reviewing).
- Reviewers should receive editor’s decision (perhaps together with the other reviewers’ comments).
- Editors may ask reviewers if they’re willing to re-review the paper (Note: re-review only if necessary).
- Reviewers may not be paid, but (somehow) be acknowledged by the journal.
- Reviewers can (should) be rated by editors to track turnaround times for improving the quality of reviewer pool.
Best Reviewer Award

AJAS editorial team is delighted to announce the winners of AJAS 2015 Best Reviewer Award, which is given annually to a few reviewers of AJAS in recognition of their outstanding efforts and contributions. We are pleased to recognize three among many invaluable reviewers as AJAS best reviewer of the year: Dr. Liang Chou Hsia (Yu Chou Friendly Agriculture Research Institute, Taiwan); Dr. Yuxi Wang (Lethbridge Research and Development Centre of Agriculture and Agri-Food Canada, Canada); Dr. Sang-Hyon Oh (North Carolina A&T State University, USA).

In 2015, AJAS received and reviewed 1,074 manuscripts involving over 300 volunteer reviewers. All reviewers kindly offered their outstanding expertise and professional services to support our journal. Based on both the quality and quantity of the reviews, the final winners were selected by editors and selection committee of the journal.

Dr. Liang Chou Hsia has been an emeritus professor of National Pingtung University of Science and Technology, Taiwan Since 2013. He received PhD degree from Edinburgh University, UK in 1981. He has widely recognized for his dedicated research efforts and professional teaching, and for regional and international contributions to animal science societies. He has served more than 40 years on researches, teaching and

AJAS (Asian-Australasian Journal of Animal Sciences)
https://www.ajas.info/
Acknowledge Reviewers’ Service

AJAS List of Reviewers: 2015

AJAS editorial team gratefully acknowledges all reviewers for their contribution to successful peer-review process of AJAS in 2015.

Abdelrahman W
Adebiyi AO
Ahmed Saeed
Ahn Dong U
Ahn Heekwon
Ahn JH
Ahn Jongjwa
Alam Mahboob
Amcrab A
An Byoung Ki
Anderson Robin
Andrade Reis R
Asano Ryoki
Attia Youssef A
Ayasan T
Bai Shipping
Baik Myunggi
Balas Prabhu
Bao Jun
Barroga AJ
Bassols Anna
Benli Hakan
Bernardino VMP
Bhuiyan Md. SA
Bin Chen
Borah Fulvia
Fernandes MHM
Gabbi Alexandre
Galvani Diego B
Ganesan Palanivel
Gao Feng
Gavoidian Dinu
Geesink Geer
Gopinger E
Guangyong Zhao
Guo Wei
Guo Yuming
Gupta Mukesh K
Ha Jong Kyu
Halimani Tinkyo
Han Jae Yong
Han Kun-Jun
Han Sung Gu
Hao Hui Fang
Heo Jung Min
Hocquette JE
Honabakhsh S
Hong Yeong Ho
Hongrong Wang
Hsia Liang Chou
Hsu Jih-Tay
Hua John K
Kim Jae-Hwan
Kim Jin Wook
Kim Jong Geun
Kim Jong Joo
Kim Jonggug
Kim Kwan-Suk
Kim Kyoung H
Kim Min Seok
Kim Myunghee
Kim Sam Churl
Kim Sang Hoon
Kim Sung Woo
Kim Sung-Jo
Kim WK
Kim Hyun-Jeong
Kim Kinarm
Kobayashi Y
Koike Satoshi
Kondo Seiji
Kong Changsu
Korde JP
Kraiem Khemais
Kumarasamy P
Kundu SS
Lai Changhua
Lee Jong-Hwan
Moradi Soudabeh
Moran John B
Morgan N
Muchenje Voster
Mujahid Ahmad
Mürsel Özdoğan
Nam Dooseok
Namung Danar D
Nasir Mukhtar
Nasr Elbordeny
Negesse Tegene
Netto Arlindo S
Newbold CJ
Novaczewski S
Oh Sang Hyon
Ohh Sang Jip
Olukosi Oluvinka
Oso A
Paik In K
Pang Huii
Pang Myung-Geol
Panjono Panjono
Park Chan S
Park Hae-Bok
Park Jin Kyung
Park Joo-Hwan
Smith Stephen B
Sohn Sea Hwan
Son Ah Reum
Son Yong Suk
Song Ki-Duk
Song Minho
Sun Sangsoo
Suryanto Edi
Tan Soon Guan
Tanaka Masahito
Tang Shaoxun
Taniguchi K
Tao Shao
Tatsuya Unno
Thanh Lam P
Toyoda Atsushi
Tripathi MK
Tsuruta Shogo
Tufarelli V
Urriola Pedro
Wanapat M
Wang Chong
Wang Jia-Kun
Wang JQ
Wang Minqi
Wang WaiWai

AJAS (Asian-Australasian Journal of Animal Sciences)
How to establish a good review system?

• Large reviewer pool.
• Invite young reviewers (screening process).
• Compose of global reviewers.
• Develop proper rewarding program.
• Listen to both reviewers and authors.
• Use reviewer performance record.
REASONS FOR DECLINING TO REVIEW

- 45% - Too busy generally
- 34% - Outside area of expertise
- 21% - Deadline too short
- 12% - Not declined recently
- 12% - Too many commitments
- 10% - Poor scientific quality
- 8% - Journal not on list
- 7% - Conflict of interest
- 5% - Poor quality English
- 4% - Other
Reviewer selection

- **Reviewers should be (criteria):**
 - An expert in the field
 - No conflict of interest
 - Be able to complete a thorough and timely review

- **Reviewer selection**
 - 2-3 (reviewers) per manuscript (plus stats reviewer)
 - Excluding the reviewer from the same institution
 - Authors may recommend reviewers to choose or to avoid
 - Author-recommended reviewers’ contact (email) new to the editor should be verified (by the reviewer’s institution)
How to perform peer-review?
No Bias!

- **Author-related**
 - ✓ Prestige (author/institute)
 - ✓ Gender
 - ✓ Place of work done

- **Paper-related**
 - ✓ Positive results
 - ✓ English proficiency
As a reviewer;

• Is the MS within your field of expertise?
• Am I happy with review process/policy of the journal?
• Do I have enough time to review the MS?
 – Can I make it to the deadline?
• Do I have any COI?
Good Reviewer

• Give a constructive and scientific opinion.
• Unbiased contribution.
• Clear & detailed comments.
• Useful and acceptable comments (to authors).
• Polite expression.
• Positive attitude toward reviewing MS as a scientist.
• Review within requested timeline.
Poor Reviewer

• Insincerity, insulting, impolite
• Subjective
• Biased
• Vague and unclear comments
• Show off
Items to be checked

• Importance of studied area: value/merit
• Originality
• Completeness
• Ethics
• Structure
• Language
• (if needed) Previous research
Originality?

• New theory, fact, materials ...
• New methodology
• New application
• Test existing theory, fact, materials ...
• Advancing current theory, knowledge or technology
Check for Misconduct

- Data fabrication and falsification
- Plagiarism
- Redundant publication
- Inappropriate authorship

We are in need of intensive education and discussion together with a proper understanding of the regulation (at both institution and publisher).
How to prepare reviewer report

• Provide a short summary on the MS including main impression on the quality of MS: interesting points, novelty, new findings.
• Composition of the Report: General comments → Major comments → Minor comments → Specific comments
• Any ethical concern?
• Provide the verdict (recommendation for reject, accept, major or minor revision) to editor, not to authors
• (will be helpful) Advice on proficiency of language
TOP NEWS

Frontiers leads in Gold Open-Access comparison

- Ranked #1 in citations in Psychology, Neurosciences, Plant Sciences, Immunology, Neurology and Physiology
- Ranked #2 in citations in Pharmacology & Pharmacy and Microbiology.
- Journals with Impact Factors on average ranked in the top 15%
Select Submission Type:
In order to start the submission, please select one of the following options:

- Submit a manuscript to a Frontiers journal.
 Select this option if you wish to submit a manuscript for review in a Frontiers Journal or a Frontiers Research Topic. This option is for new submissions; to submit a revised version of a manuscript already in review, please use the resubmission link you received by email.

- Submit an abstract to be considered for a Frontiers Research Topic.
 Select this option if you wish to submit an abstract for consideration by the editors of a Frontiers Research Topic.

- Submit an abstract to an event, such as a conference.
 Select this option if you wish to submit an abstract for inclusion in an event hosted through Frontiers Events.

Manuscripts are checked by plagiarism detection software

RESUME SUBMISSION START SUBMISSION
To review
Macrophage polarization contributes to the anti-tumoral efficacy of mesoporous nanovectors loaded with albumin-bound paclitaxel

Fransisca Leonard, Louis T. Curtis, Matthew James Ware, Taraz Nosrat, Xuewu Liu, Kenji Yokoi, Hermann Friboes and Biana Godin*

Original Research, Front. Immunol. - Inflammation
Submitted on: 04 Apr 2017, Edited by: Diana Boraschi
Research Topic: Interaction of nanomaterials with the immune system: role in nanosafety and nanomedicine
Keywords: Macrophage polarization, Nanotherapy, breast cancer, computational modeling, Tumor Microenvironment

NO ACTION IS REQUIRED FROM YOU

This manuscript has been accepted for publication.

Reviewer 2: Cheol-Heui YUN
Independent review report submitted: 15 Apr 2017
Interactive review activated: 02 May 2017
Final report submitted: 27 May 2017

Final Evaluation

Q 1 Final comments to Author (optional):
No answer given.

Q 2 Do you ENDORSE THE PUBLICATION of this manuscript in its current form?
Reviewer 2: Cheol-Heui YUN | 15 Apr 2017 | 10:53

The description for ‘Mathematical model’ is not clear to understand. Furthermore, there is no ‘Supplementary information’, which is described in lines 521-522.

Line 487; ‘Conditioned media were harvested from macrophage-‘: 1) Do the conditioned media mean supernatant containing soluble factors without the cells, macrophage? 2) Why did authors remove the drug treatment and replace with fresh medium, if the purpose of this experiment was to determine whether the conditioned media containing soluble factors produced by MVS-nAb-PTX treated macrophages to examine the anti-tumorigenic milieu by TME?

There is no description of the MnM in the figure 7.

Figure 6 is in poor quality. And the legend of the figure 6 is insufficient.

Author: Biana Godin | 18 May 2017 | 19:07

"The description for ‘Mathematical model’ is not clear to understand. Furthermore, there is no ‘Supplementary information’, which is described in lines 521-522."

-We apologize, it appears that the Supplementary information file with the model description was not uploaded properly during the manuscript submission. We made sure that the reviewer has an access to this information when the revised version of the manuscript is uploaded.

"Line 487; ‘Conditioned media were harvested from macrophage-‘: 1) Do the conditioned media mean supernatant containing soluble factors without the cells, macrophage? 2) Why did authors remove the drug treatment and replace with fresh medium, if the purpose of this experiment was to determine whether the conditioned media containing soluble factors produced by MVS-nAb-PTX treated macrophages to examine the anti-tumorigenic milieu by TME?"

-Line 487 (new line 543).We have clarified the method and rational as follows: "Drug treatment was removed and cells were washed twice with PBS, and fresh medium was added to the macrophages to mimic the clinically relevant situation, as clinical studies with nAb-PTX revealed that more than 90% of the drug is cleared from the circulation within 1h following intravenous administration (PMID 15930349). In the hypo-vascularized macrophage-enriched tumor lesions, macrophages can serve as the cellular depot of the drug. Supernatants (conditioned media) were harvested from macrophages and fresh medium was added. The conditioned media were mixed with the fresh media..."
Macrophase Polarization Contributes to the Anti-Tumor Efficacy of Mesoporous Nanovectors Loaded with Albumin-Bound Paclitaxel

Fransisca Leonard, Louis T. Curtis, Matthew James Ware, Taraz Nosrat, Xuewu Liu, Kenji Yokoi, Hermann B. Frieboes, and Biana Godin

1Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States
2Department of Bioengineering, University of Louisville, Louisville, KY, United States
3Department of Surgery, Baylor College of Medicine, Houston, TX, United States
4James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States

Therapies targeted to the immune system, such as immunotherapy, are currently shaping a new, rapidly developing field of promising cancer treatments, offering the potential to change the prognosis of previously non-responding patients. Macrophages comprise the most abundant population of immune cells in the tumor microenvironment (TME) and undergo differentiation into functional phenotypes depending on the local tissue environment. Based on these findings, tumor-associated macrophages (TAMs) can either aid tumor progression (M2 phenotype) or inhibit it (M1 phenotype). Presence of M2 macrophages and a high ratio of M2/M1 macrophages in the TME are clinically associated with poor prognosis in many types of cancers. Herein, we evaluate the effect of macrophage phenotype on the therapeutic efficacy of albumin-bound paclitaxel (nAb-PTX) loaded into porous silicon multistage nanovectors (MSV), a coculture of breast cancer cells (3D-spheroid) with macrophages and in vivo models were conducted to evaluate the therapeutic efficacy of MSV-nAb-PTX as a function of macrophage phenotype. Association with MSV increased
Phagocytosis by thrombocytes is a conserved immune mechanism in lower vertebrates

Takahiro Nagasawa¹, Chihaya Nakayasu², Aja M. Rieger³, Daniel R. Barreda³, Tomonori JS keeps, Miki Nakao¹*

¹ Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Japan
² National Research Institute of Aquaculture, Fisheries Research Agency, Minami-Ise, Japan
³ Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada

Thrombocytes, nucleated hemostatic blood cells of non-mammalian vertebrates, are regarded as the functional equivalent of anucleated mammalian platelets. Studies of their immune functions, including phagocytosis, have also been suggested but no conclusive molecular or cellular experimental evidence for this. In the present study, we demonstrate the active phagocytic ability of thrombocytes in lower vertebrates, teleost fishes and amphibian models. *Ex vivo*, common carp thrombocytes were able to ingest live bacteria as well as latex beads (0.5–3 μm in diameter). *In vivo*, we found that thrombocytes represented nearly half of the peripheral blood leukocyte pool. Phagocytosis of latex beads by thrombocytes was increased with age.
Conclusion: Peer Review Principles (from COPE)

• Only agree to review manuscripts for which you have the subject expertise required to carry out a proper assessment and which you can assess in a timely manner.

• Respect the confidentiality of peer review and do not reveal any details of a manuscript or its review, during or after the peer-review process, beyond those that are released by the journal.

• Do not use information obtained during the peer-review process for your own or another person’s or organization’s advantage, or to disadvantage or discredit others.
Conclusion: Peer Review Principles (from COPE)

• **Declare** potential **conflicting interests**, seek advice from a journal if you are unsure whether something constitutes a conflicting interest.

• Do **not** allow reviews to be **influenced** by a **nature and origin of manuscripts**; by the nationality, religious or political beliefs, gender or other characteristics of the authors; or by commercial considerations.

• **Be objective** and **constructive** in your reviews, refrain from being hostile and from making derogatory personal comments.
Conclusion: Peer Review Principles (from COPE)

• Acknowledge that peer review is a reciprocal endeavor and carry out your fair share of reviewing and in a timely manner.
• Provide journals with personal and professional information that is accurate and a true representation of your expertise.
• Recognize that impersonation of another individual during the review process is considered serious misconduct.
WHO’s the boss?

- OPEN SCIENCE PROJECTS (Open access policy, Jeong-Wook SEO, 2017)
 - Open Research Agenda
 - Open Research Infrastructure

Thank you very much for your attention

WHO should we care and WHY?

- Equality vs. Equity

[Open Access to Open data and Open science]